sábado, 8 de abril de 2017

1479 - Continuando con Goldbach

A raíz del problema anterior, Graeme McRae encontró  solo dos números pares menores a 1000 (8 y 12)  que al sumarles cada uno de los primos que forman el par cuya suma da dicho número, esta suma da un número primo.
Para aclarar:

8   = 3+5 y 8+3 y 8+5 son números primos
12 = 5+7 y 12+5 y 12+7 son números primos
Para todo otro número par menor a 1000
Si P = mi  + ni   alguna de las sumas P + mi ó P + ni  es compuesto
Por ejemplo para 16
16 = 3+13 = 5+11 y la sumas 16+5 y 16+11 dan un número compuesto.

Hay muchos números pares en los que alguna de las sumas da primo, pero no en todas.


Por otra parte Graeme señala que 8, 12, 18, 24, y  30 son los únicos números en los que todas las sumas dan un número primo o que todas las sumas menos una da un número primo.

Por ejemplo 
24 = 5+19 = 7+17 = 11+13
Son primos 24+5, 24+19, 24+7, 24+17, y 24+13 pero 24+11 es compuesto.


¿Alguien puede encontrar algún otro ejemplo además del 8 y el 12 en los que todas las sumas dan números primos?

¿Alguien puede encontrar algun otro número par en las que todas las sumas menos una da un número primo? 
Si lo quieres compartir o guardar
Share/Bookmark

miércoles, 5 de abril de 2017

1478 - Conjetura de Goldbach

La conjetura de Goldbach dice : 

Todo número par mayor a dos puede expresarse como suma de dos primos.
o sea P = a + b 
donde P =  Nº par mayor a dos y a y b son números primos.
Así :
4= 2+2
6= 3+3
8= 3+5
10 = 3+7 = 5+5
12 = 5+7
14 = 3+11 = 7+7
etc

Ahora bien que pasa si a P le sumamos a o b, se obtendrá siempre al menos un número primo?
Lamentablemente no.
Por ejemplo 28 = 5+23 = 11+17 y 28+5, 28+23, 28+11 y 28+17 son todos números compuestos.
Los siguientes números pares no dan un primo cuando le sumamos alguno de estos primos
4, 6, 28, 38, 52, 58, 62, 68, 74, 80, 82  etc.

¿Cuáles son los primeros x pares consecutivos que no están en la secuencia? Donde x = 3, 4, etc.

¿Qué pasa si el primo a sumar puede ser cualquier primo?
Aparentemente siempre se puede encontrar un primo que sumado a un número par de un número primo.
Alguien puede demostrarlo o refutarlo?
Quizás ya está comprobado, disculpen mi desconocimiento sobre el tema.

Si lo quieres compartir o guardar
Share/Bookmark